
ScanConfig
Configuration Software for Symbol PalmOS

Devices including SPT1500, SPT17xx, SPT18xx, and CSM150

Users Guide
Version 1.2
October 2003

Introduction
Installation
Running the Software

From the Main (Home) Screen
From Another Application

Configuring the Scanner
Barcode Types
Check Digits
Conversion
Lengths
Hardware Parameters

Testing the Settings
Creating Multiple Configurations
Miscellaneous Menu Options

Copying Barcode
AutoConfiguration
Restoring Factory Defaults
Password Protection
Version Information

Configuring Multiple Handhelds
Technical Support
Programming Notes

Bad Scan Beep
Interactive External Configuration
Automatic Configuration

Introduction

ScanConfig is a new Palm "Preference" which lets you configure all aspects of the operation of
PalmOS barcode-scanning handheld devices from Symbol Technologies, including the SPT1500,
SPT17xx, and the plug-in CSM150 for the Handspring Visor. All of these aspects are typically
under programmatic control, so they have been accessible to programmers writing custom software
running on those units, but without ScanConfig they were not accessible to the end user.
ScanConfig not only lets you configure all parameters which control the operation of the scanner, it
even lets you set up multiple sets of configurations for different applications, and even lets
programmers use ScanConfig to automatically preconfigure the scanner to the parameters you have
chosen for that application.

Installation
Windows:

Double-click on the file ScanConfig.prc. A window labelled Install Tool should appear, with a
UserName selection box with the name of one or more Palm handheld units. Select the one you wish
to install the software in, and click on OK. A second Install Tool window will appear, showing
ScanConfig in a list of programs to be installed. Click on Done, and another window will appear
informing you that ScanConfig will be installed in your Palm the next time you do a HotSync.
Perform a HotSync and the software will be installed.

Macintosh:

Select Install Handheld Files from the HotSync menu. Make sure the User is set to the
handheld unit in which you want to install the software, and drag the ScanConfig.prc file into the
large box in the window (or use the Add To List button to select the file). Close the window,
performa HotSync, and the software will be installed.

Running the Software

From the Main (Home) Screen

On the main Palm ("Home") screen you'll see a series of icons representing different programs.
ScanConfig does NOT appear on this screen directly. Instead, it is one of the Palm "Preferences"
which are accessed using the "Prefs" icon:

When you select the Prefs application, the most recently used preference screen will appear. It
might, for example, be the "General" preferences which looks like this:

When you see this screen, in the upper right you'll see a list of all the available preferences. Select
Scanner from this list, and the ScanConfig preference application will start.

You can return to any of the other preferences using the same pop-up menu in the upper right corner
of the screen, or tap the Home button to return to the main screen.

From Another Application

Some other applications, such as On Hand from Stevens Creek Software, are

"ScanConfig-aware", and have a menu or other means to transfer directly to ScanConfig to
configure the scanner. In that case, the ScanConfig screen will look slightly different:

Note that the pop-up menu of different preferences in the upper-right hand corner of the screen is
absent, and instead, a Done button appears in the lower right of the screen. After you are finished
using ScanConfig, tap on Done and you will be returned to the application which you were using
before you launched ScanConfig.

Configuring the Scanner
There are five configuration buttons on the main screen, leading to five separation configuration
windows:

Barcode Types

There are a series of barcode types which can be scanned or not, depending on which boxes are
checked:

It might seem that one should always check all types so that all barcodes will be scanned. After all, if
you never encounter an MSI_Plessey barcode, whether that box is checked or not is irrelevant.
However, there are some very specific cases where the boxes checked will actually change the
barcode which you scan. For example, if you scan a food coupon in your Sunday paper and
"UPCEAN Coupon" is checked, you will typically see a 22-digit "Coupon" code, consisting of a
12-digit UPC code followed by a 10-digit coupon code. If you uncheck the "UPCEAN Coupon"
box, and scan again, you'll scan just a 12-digit UPC code. Even "stranger" to those unfamiliar with
barcodes are the barcodes which appear on books, which are actually dual barcodes (leaving aside
the supplemental barcode for the price, discussed below). If you scan a book barcode with all codes
enabled, you'll read a 10-digit "Bookland EAN" barcode, which corresponds to the ISBN number of
the book. But if you disable Bookland_EAN by unchecking that box, now if you scan the same
barcode you'll see a 13-digit EAN barcode. If you are trying to match the scanned barcode to
information in a database, clearly you need to select the correct barcode types so that the scanned
barcode will match as you expect.

Check Digits

The "Check Digit" screen lets you select whether or not the scanned barcode should include a check
digit for several barcodes for which that option is available; again, whether or not you want this to
happen depends on whether or not the barcodes in your existing databases have or don't have that
information. In addition to the check digits, there are a number of related items on this screen:

MSI Plessey check digits, unlike other check digits, actually have several options.
They can either have 1 or 2 check digits, and, if they have two, they can use two different
check digit schemes, known as Mod10_Mod10 and Mod10_Mod11.
I2OF5 Verification can be three different choices - None (no verification of the check
digit), USS (one check digit verification scheme), and OPCC (another scheme).
UPCA, UPCE, and UPCE1 Preambles (the initial digit of a barcode) have three
choices: None strips off the preamble digit, System returns the "normal" starting digit of
the barcode, and System/Country adds an additional starting digit at the front which
corresponds to the country.
CODE39 Check Digit Required, if checked, will only return CODE39 barcodes which
include a check digit (not all do).

Conversion

Sometimes, the barcode that is scanned is not exactly what you want; various "conversions" can be
automatically performed by the scanner:

Automatic conversion converts one barcode type to another. One of the most commonly
needed is UPCE->UPCA, which automatically converts "compressed" 8-digit UPC codes
(typically found on smaller items) into "normal" 12-digit UPC codes.
CODE39 Full ASCII specifies whether various special characters are allowed in
CODE39 barcodes.
Zero-extend EAN8 does what it says.
Prepend CODE32 Prefix prepends a prefix on CODE32 barcodes.
CODEBAR Editing presents three options for conversion of CODABAR barcodes:
None scans the barcode as is, Notis editing strips the leading and trailing characters from

the barcode, and Clsi editing strips the leading and trailing characters, and inserts spaces
after the first, fifth, and tenth characters.
UPC/EAN Supplement has three options for scanning barcodes which may or may not
have "supplements." Typical examples of these are books, which have a 5-digit
"supplemental" barcode representing the price, and magazines, which have a 2-digit
supplemental barcode representing the month. The three options for these barcodes are
Required, which will ONLY scan barcodes which include such supplements and will not
scan "plain" UPC/EAN barcodes, Optional, which will include such supplements in the
scanned barcode if they exist, and not if they don't, and Ignore, which will strip out the
supplementals if they do exist, and will produce only the "plain" barcode.
UPC/EAN Redundancy is a number which specifies how many times UPC/EAN
barcodes are scanned in cases in which the supplement is Optional, to be absolutely sure
that they are or are not present.

Lengths

A number of barcodes can have specific length restrictions placed on them.

For each of these barcodes, you can select four choices for length: Any, 1 Fixed, 2 Fixed, and
Range. Any allows any length. 1 Fixed allows only barcodes of the length specified in column 1.
2 Fixed allows two different specific lengths, specified in columns 1 and 2. And Range allows any
barcode whose length is greater than or equal to the number in column 1, and less than or equal to the
number in column 2. The subtle issue here is that these restrictions apply BEFORE other
modifications. Thus if a CODABAR barcode is being subject to Clsi or Notis editing (see previous
section), the lengths here apply before that editing.

Hardware Parameters
A number of hardware parameters control the actual operation of the scanner:

Scan Angle can be wide or narrow.
Aim duration can be 0.0 to 9.9 seconds. If the duration is non-zero, than for the specified
amount of time, before the actual barcode scan occurs, the units operates in "laser pointer"
mode, allowing the user to aim the beam directly at the barcode which is then scanned.
Maximum decode time can be 0.5 to 9.9 seconds. After this amount of time, the
scanner will "give up" and assume that whatever you are scanning can't be scanned.
Beep after good decode does what it says.
LED on time can be 0.0 to 9.9 seconds, and turns on the green LED on the unit for the
specified time after a good scan occurs.
Decode beep is specified in milliseconds from 0 to 1000 (1 second), and controls how
long the scanner beeps after a good scan (if the "Beep after good decode" box is checked).
Low Beep Freq (in Hz) and Duration (in msec) control the "low beep" of the unit.
Unlike the "Beep after good decode" discussed above, the Symbol unit does not by itself
beep after a "bad decode." However, if a programmer specifies in their software that the
unit should issue a "low beep" after a bad scan, then the frequency and duration specified
here will control the sound of that beep.
UPC/EAN Security and Linear Security can range from 1 to 4. The higher the
number, the more times a barcode must be scanned (and the same result acheived) before
the scan is reported. Only use high numbers if the quality of the barcodes is poor (i.e.,
faded or otherwise damaged). Linear Security applies to "linear" barcodes including
CODE39 and I2OF5.
Bidirectional Redundancy requires that barcodes be scanned successfully in both
directions before decoding.

Testing the Settings
Whenever you change settings on any of the five screens described above, the scanner is immediately
reconfigured to those settings (you'll hear a multiple beep sound which confirms that the scanner has
been given the new settings). Now you can press the on-screen Scan button to scan a barcode, or, if
you have a Symbol SPT1500 or SPT17xx, the physical scan buttons, and confirm that the settings
you have established produced the results you want.

Creating Multiple Configurations

Near the top of the ScanConfig screen is a pop-up menu labelled Configure, as shown above.
Tapping on the arrow will show a list of three or more items. The first time you use the program, the
list will appear exactly as shown here. Default represents the current or default configuration of the
scanner. ScanConfig lets you create up to 14 different configurations of the scanner, to match your
needs for various applications which might require different configurations. To create a new
configuration, select Create New from the menu. You'll be asked to name the new configuration,
and then it will appear on the list (in this example, it will appear immediately below "Default" in the
updated list). Delete Current deletes the currently selected configuration (the one which appears
when the pop-up menu is now showing, as on the left above), with the proviso that you cannot
delete the last remaining configuration (that is, you must always have one configuration).

One special feature won't be obvious from ScanConfig itself, but will become apparent if you have
another program installed on the unit which uses ScanConfig to configure the scanner, such as On
Hand (version 3.3 or higher), CatScan (version 1.3 or higher), or Take An Order! (version 2.3
or higher) from Stevens Creek Software. If you are running these or a similar program, and use
a menu option in that program to access ScanConfig (rather than accessing ScanConfig via the
Prefs application), then a configuration named after the program ("On Hand" for example) is
automatically created.

Miscellaneous Menu Options

There are a number of special options which are available using the Options menu. To select one of
these options, first tap the Menu button on the lower left-hand corner of the screen to cause the
menu to appear; then tap the desired menu option.

Copying Barcode

Under rare circumstances, you may need to scan a barcode to use in another program which is not
barcode-enabled. To do this, after scanning a barcode using ScanConfig, select Copy barcode
from the Options menu, then transfer to the other application and use its Paste command.

AutoConfigure on Reset

When the Symbol unit is reset using a "soft" or "hard" reset, the configuration of the unit is reset to
its "factory default" settings. You may prefer that it be set instead to the current settings you have
established using ScanConfig. To make sure this happens, select AutoConfigure from the
Options menu, and check the box marked AutoConfigure on Reset.

With this box checked, whenever the unit is reset, ScanConfig is automatically run once the unit
"boots up," and the default configuration (the last configuration chosen the last time ScanConfig
was run directly by the user) is established.

Restoring Factory Defaults

Symbol establishes certain factory defaults for the settings of the scanner. Although there is no
guarantee that these settings are particularly appropriate to your needs, you can if you choose to
initialize all settings to those defaults. To do this, select Factory Defaults from the Options

menu. The currently selected configuration ("Default" in the example in the previous section) will be
the one which is modified.

Password Protection

If some cases, you may want a supervisor or IT person to establish the configuration of the scanner,
but prevent the end-user from making any changes to that configuration. ScanConfig lets you do
this by establishing password protection. To do this, select Password from the Options menu and
you'll see this screen:

In order to restrict access to the software, check the box marked "Password required for changes"
and enter a password (15 characters or fewer). Once you do this, future attempts to use the software
will be met by this screen:

Only after the password is correctly entered is the user able to modify configurations, change
configurations, or select different configurations, in other words, to do anything which will change
the operation of the scanner.

BE SURE TO WRITE DOWN THE PASSWORD SOMEWHERE if you
use this feature. If you password protect the software, and forget the password,
your only recourse is to delete the software from your Palm (using the Delete
menu from the main Palm "Home" screen) and then reinstall it.

Version Information

When obtaining technical support from Symbol or Stevens Creek Software, or when reporting a
problem, you may need to have access to the software revision levels on your system, for both the
scanner software itself as well as for ScanConfig.. To access this information, select Scanner
Info from the Options menu and you'll see this screen:

Configuring Multiple Handhelds

If you are using ScanConfig on multiple handheld units, you might want to transfer the settings
from one unit to another one. Because these settings are maintained in a standard Palm "database",
this is a simple matter. After creating the configuration(s) on one handheld, make sure that the
HotSync Manager has its "System" conduit (called "Backup" if you are using a Macintosh) set to
"Backup" (this is the default setting for this conduit, so most likely you'll find it already set to this
value). With this setting, all Palm databases which do not have their own "conduit" are backed up
automatically to a special folder in your user folder. Using Windows, and assuming your handheld
unit is named "Sales1" and that you have a "typical" setup, the folder in question will be
C:\Palm\Sales1\Backup (on Macintosh, it will be named
MacintoshHD:Palm:Users:Sales1:Backups). In both cases, the file itself containing the database
of scanner configurations is called ScanCfgDB.pdb (so if you have trouble locating the right folder,
just use your computer's "Find" feature to search for that file). ScanCfgDB.pdb is a file which can be
installed, just like a Palm program, into any PalmOS handheld unit, using the standard Palm install
program. So all you need to do to configure multiple units identically is to install ScanConfig.prg in
one handheld unit, set up the configuration or configurations that you want, even enter a password if
you wish, then perform a HotSync, and now install both ScanConfig.prc AND ScanCfgDB.prc
into any other handheld you wish to configure in the same way.

Technical Support
If you need technical support for ScanConfig, you should first check our support web page,
http://www.stevenscreek.com/palm/support.html, where we have tried to assemble answers
to all the most commonly encountered problems with downloading, installing, and using our
software. If that doesn't solve your problem, we encourage you to do so by email at
support@stevenscreek.com. We provide phone support for our "regular" software (like On
Hand, CatScan, and Take An Order!), but we provide email support ONLY for ScanConfig.
If you have programming questions, please email them to development@stevenscreek.com.

Programming Notes
This section is designed to be read by programmers, who are
developing programs which will interact with ScanConfig. If you
are an "end-user" of ScanConfig, and not a programmer, you should
skip this section.

ScanConfig is designed to be used by other programs in a number of ways:

Bad Scan Beep

Symbol units can be configured by the user (see above) to beep after a good scan, but strangely
enough they can NOT be routinely configured to make a different sound after a bad scan; that is
something that must be done by the programmer. ScanConfig does allow the user to configure the
frequency and duration of the "low beep" which can be accessed by the programmer. To make use of
this feature, we recommend writing your software in the following way:

else if (event->eType == scanDecodeEvent) {
 scanStatus = G_ScanGetDecodedData(&decodeDataMsg);
 if (scanStatus == STATUS_OK) {
 if (decodeDataMsg.type!=BCTYPE_NOT_APPLICABLE) {
 // Process the scan here
 }
 else G_ScanCmdBeep(One_Long_Low);
 }
 handled=true;
}

The key line here is the G_ScanCmdBeep(One_Long_Low); command, which uses the frequency and
duration established by the user on the Hardware Parameters screen of ScanConfig to sound a
long, low-frequency beep informing the user that a bad scan has occured. Of course you can also use
this in other ways, for example, you might use it even if the scan itself was good, but it didn't match
anything in a database in your application. Of course that kind of use is entirely up to you.

Interactive External Configuration

It isn't at all necessary, since the user can always access ScanConfig via the Prefs application, but
you may wish to add a "Configure Scanner" menu to your application, and have that menu launch
ScanConfig so that the user can configure the scanner. As described above, in this mode,
ScanConfig will display a "Done" button which, when pressed, will return the user to your
application. Note also that in this mode, the "normal" exits for ScanConfig (such as pressing the
"Home" button to return to the main screen of the Palm) are disabled, so that the ONLY way out of
ScanConfig is back through your application. Thus if your application wants to hold the user
"captive" and not allow the user to run other applications residing on the Palm, this behavior will not
be "betrayed" by ScanConfig.

Programming access to ScanConfig for configuration MUST be done using the SysUIAppSwitch
API command, and NOT the SysAppLaunch command; this occurs because, unfortunately, the
Symbol scanner library uses global variables in ways that it probably shouldn't. As part of this,
ScanConfig requires that you "tell it who you are", that is, you tell ScanConfig the "creator ID"
of the application to which it should return when the Done button is pressed. Here is typical code
that you can use to do this:

#define appFileCreator 'SCSi'
UInt32* creatorP;
LocalID ScanConfigID;
DmSearchStateType theSearch;
UInt cardNo;

else if (event->eType == menuEvent) {
 MenuEraseStatus(NULL);
 handled=true;
 switch (event->data.menu.itemID) {
 case scanSetupMenu:
 if (DmGetNextDatabaseByTypeCreator(true,
 &theSearch,'panl','SCsc',false,
 &cardNo,&ScanConfigID)==errNone) {
 creatorP=MemPtrNew(4);
 MemPtrSetOwner(creatorP,0);
 *creatorP=appFileCreator;
 SysUIAppSwitch(0,ScanConfigID,
 sysAppLaunchCmdPanelCalledFromApp,creatorP);
 }
 else FrmCustomAlert(infoAlert,"ScanConfig application not found","","");
 break;

Some of the key features of this code: First, note that ScanConfig is a 'panl' (not an 'appl') and its
creator ID is 'SCsc'. Second, note that in order to pass information to ScanConfig (in this case, the
creator ID of YOUR application), you need to create a new pointer and set that pointer to be owned
by the system (the MemPtrSetOwner line). appFileCreator is, of course, the creator ID of your
application, which is typically declared as a #define at the top of your code. And finally, note that we
are using a "launch code" of sysAppLaunchCmdPanelCalledFromApp, which lets ScanConfig
know it has been called by another application, and not via the Prefs application.

The other key feature of accessing ScanConfig in this way is the RETURN from ScanConfig to
your application. This will occur NOT with a "normal launch" code but with a
sysAppLaunchCmdReturnFromPanel launch code, which your application must be able to handle.
Thus the PilotMain of your application might need to look like this:

if ((cmd == sysAppLaunchCmdNormalLaunch)
 || (cmd==sysAppLaunchCmdReturnFromPanel)) {
 StartApplication(cmd);
 FrmGotoForm(mainForm);
 EventLoop();
 StopApplication();
 return(0);
}
else return(0);

You could use the fact that different launch codes are used to access your application (one from the
main Home screen, the other when returning from ScanConfig) to do different things. For
example, you might want to display a "splash screen" on the initial entry to your application, but not
when returning from configuring the scanner:

if ((cmd == sysAppLaunchCmdNormalLaunch)
 || (cmd==sysAppLaunchCmdReturnFromPanel)) {
 StartApplication(cmd);
 if (cmd == sysAppLaunchCmdNormalLaunch) FrmGotoForm(introForm);

 else FrmGotoForm(mainForm);
 EventLoop();
 StopApplication();
 return(0);
}
else return(0);

Automatic Configuration

If the user has established a configuration in ScanConfig named after your application (either
automatically using the "Interactive External Configuration" method described in the previous
section, or manually simply by entering ScanConfig and using the Create New option to create a
suitably named configuration), then your application can use that configuration to automatically
configure the scanner when the application starts. In other words, the user launches your application,
your application immediately (before displaying any UI to the user) launches ScanConfig using a
special launch code which tells ScanConfig to find the right configuration, configure the scanner,
and exit. Your application is then launched a second time, this time with a different launch code, and
this time it can "really" start up. All this is not only transparent to the user, but also occurs extremely
quickly, so it is a perfectly viable way to write your application, and to be sure that when it starts, it
will always start in a "known" state.

Typical PilotMain code which would accomplish this task might look like this:

#define sysAppLaunchConfigureScanner 32768

DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
{
 LocalID ScanConfigID;
 DmSearchStateType theSearch;
 UInt cardNo;
 UInt32* creatorP;
 Err err;

 if ((cmd == sysAppLaunchCmdNormalLaunch)
 || (cmd==sysAppLaunchCmdReturnFromPanel)) {
 if (cmd == sysAppLaunchCmdNormalLaunch) {
 if (DmGetNextDatabaseByTypeCreator(true,&theSearch,'panl','SCsc',
 false,&cardNo,&ScanConfigID)==errNone) {
 creatorP=MemPtrNew(4);
 MemPtrSetOwner(creatorP,0);
 *creatorP=appFileCreator;
 err=SysUIAppSwitch(0,ScanConfigID,sysAppLaunchConfigureScanner,creatorP);
 }
 }
 StartApplication(cmd);
 FrmGotoForm(mainForm);
 EventLoop();
 StopApplication();
 return(0);
 }
 else return(0);
}

As you can see, on the "NormalLaunch" (your application being started from the Home screen or
"Launcher"), your application looks to see in ScanConfig is present; if it is, it is launched with a

special launch code sysAppLaunchConfigureScanner; if not, the application continues launching
normally. If ScanConfig IS present, this application exits, ScanConfig runs, displays a message
"Initializing Scanner..." on the screen (so the user knows what is happening and why your
application isn't immediately appearing on screen), configures the scanner (non-interactively),
removes the message from the screen, and then exits and re-launches your application, this time with
the launch code sysAppLaunchCmdReturnFromPanel. With it receives this launch code, of course,
your application must NOT launch ScanConfig on entry, lest an endless loop ensue, but instead
just does its "normal" thing.

Note that ScanConfig only configures the scanner, it does not activate the scanner. Even when
ScanConfig has been run automatically, your application still needs to activate the scanner using
standared Symbol API commands:

 ScanOpenDecoder();
 ScanCmdScanEnable();

and, when finished,

 ScanCmdScanDisable();
 ScanCloseDecoder();

Copyright 2001-3 by Stevens Creek Software
All Rights Reserved

